- International Tables for X-Ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KURLAND, R. J. & WILSON, E. B. (1957). J. Chem. Phys. 27, 585.
- LIDE, D. (1962). Tetrahedron, 17, 125.

LIMINGA, R. & OLOVSSON, I. (1964). Acta Polytech. Scand., Math. Computing Mach. Ser. No 10.

- LINDQVIST, I. (1963). Inorganic Adduct Molecules of Oxocompounds. Berlin: Springer Verlag.
- LINDQVIST, I. & ZACKRISSON, M. (1960). Acta Chem. Scand. 14, 453.
- NARDELLI, M., CAVALCA, L. & FAVA, G. (1957). Gazz. chim. Ital. 87, 1232.
- NARDELLI, M., COGHI, L. & AZZONI, G. (1958). Gazz. chim. Ital. 88, 235.
- Rosenheim, A. & Stellmann, W. (1901). Ber. dtsch chem. Ges. 34, 3377.
- VILKOV, L. V., AKISHIN, P. A. & PRESNYAKOVA, V. M. (1962). *Zh. Strukt. Khim.* 3, 5.
- ZACKRISSON, M. (1961). Acta Chem. Scand. 15, 1784.
- ÅSBRINK, S. & BRÄNDÉN, C.-I. (1963). I.U.Cr. World List of Crystallographic Computer Programs, No 6023 FACIT.

Acta Cryst. (1966). 20, 758

A Reinvestigation of the Crystal Structure of LiIO₃*

By Abraham Rosenzweig

University of New Mexico, Albuquerque, New Mexico, U.S.A.

and Bruno Morosin

Sandia Laboratory, Albuquerque, New Mexico, U.S.A.

(Received 12 July 1965 and in revised form 18 September 1965)

The crystal structure of LiIO₃ has been reinvestigated with the use of single-crystal Mo $K\alpha$ diffractometer intensity data. Morphological measurements and diffraction photographs establish $P6_3$ to be the correct space group. The values for the lattice constants, $a_0 = 5.1815$ and $c_0 = 5.1709$, were determined by a least-squares fit of back-reflection powder lines. The structure consists of lithium ions, surrounded by six oxygen atoms in a distorted octahedral arrangement, and discrete trigonal iodate groups with a 1.817 Å iodine-oxygen bond distance and 98.65° O-I-O bond angle.

Introduction

As a result of discussions concerning naturally occurring iodates (Kaplan, 1966), we reviewed the literature on the configuration of iodate groups in crystalline solids. It was noted that the structure of LiIO₃ reported by Zachariasen & Barta (1931) (hereafter ZB) placed the iodine in an octahedral coordination with six equidistant oxygens, rather than in trigonal, pyramidal configuration as in other iodates. That the structure might merit reinvestigation was pointed out by Wyckoff (1960). This anomalous behavior of iodine in several alkali metal iodates has also been noted by Ibers (1956). On examination of the original paper of ZB, it became apparent that the structure was interpreted largely from powder diffraction data, and that the crystals available were extremely small. It is then not too surprising that an incorrect space group was chosen and erroneous positions were deduced for the lighter atoms. Since occasionally discrete molecules rearrange in the solid state when crystallized from gaseous or liquid state, (e.g. gaseous Al₂Cl₆ and infinite molecular

sheets in crystalline $AlCl_3$), the structure of $LiIO_3$ merits reinvestigation.

Our structure results are reported here.

Experimental

Crystals of lithium iodate were prepared in the following manner: (1) stoichiometric quantities of reagent grade iodic acid and lithium carbonate were dissolved in water; (2) the solution was then warmed to remove any remaining carbon dioxide; (3) the solution was allowed to evaporate at room temperature until crystals began to form.

The crystals obtained are brilliant pseudo-prisms up to 0.5 mm long and 0.2 mm in diameter. Careful examination reveals that the apparent prisms are actually portions of extremely steep hexagonal pyramids. Morphological measurements made with a reflecting goniometer yielded results which permit the indexing of all but the very steep faces. The polar angle of these steep faces is so great that indexing becomes ambiguous. The approximate index of these faces, orienting them so that they taper toward the negative end of c, is $\{20 \cdot 0 \cdot \overline{20} \cdot \overline{1}\}$. These are terminated by the forms $\{10\overline{11}\}$, $\{10\overline{11}\}$, and very small faces of $\{12\overline{32}\}$. Mor-

^{*} This work was supported by the United States Atomic Energy Commission.

phological measurements are listed in Table 1. The morphology is illustrated in Fig. 1 and is characteristic of the point group 6 (C_6) rather than 622 (D_6) as reported by ZB.

T-1-1-	1	16		: 1	1 - 4 -	ſ	1:10
Table	1.	MOR	рпои	ogicai	aata	jor	LIIU

Form	φ	Q
{ 10Ī 1}	30°	47° 27′
{10 11 }	30°	47°27′
{20 0 20 1}	30°	- 87° 20′
{1232}	49°05′	- 55°13′

The polar character of the c axis is further established by the piezoelectric property of the crystals. Crystals which were held between two copper strips develop a positive polarity at the larger end upon compression.

The crystals of LiIO₃ dissolve slowly in water, and microscopic observation shows that the ends of the crystals dissolve at different rates and in different ways. The form $\{10\overline{1}1\}$ etches and rounds rapidly, while the form $\{10\overline{1}1\}$ disappears and is replaced by sharp faces of $\{11\overline{2}\overline{1}\}$. The appearance of the crystal after about 15 seconds in water at 20°C is shown in Fig.2. Broken fragments display similar behavior.

The room-temperature unit-cell dimensions for LiIO₃ were obtained by least-squares fit of 12 back-reflection powder lines obtained in a 114.5 mm Norelco powder camera with Cr $K\alpha$ radiation. These values (λ for

Fig. 1. Morphology of LiIO₃ grown from a saturated water solution.

Fig. 2. The modified morphology of water-etched LiIO3 crystals.

Cr $K\alpha_1 = 2.28962$ Å), $a_0 = 5.4815 \pm 3^*$, $c_0 = 5.1709 \pm 4$, compare favorably with previous values of $a_0 = 5.469 \pm 3$, $c_0 = 5.155 \pm 3$ (ZB) and $a_0 = 5.481$, $c_0 = 5.172$ (NBS, 1957). Systematic absence of 000*l* reflections except for l=2n, the morphology, and physical properties establish the space group $P6_3$.

From typical crystal specimens described above, a pseudo-prism, approximately 0.08 mm maximum diameter and 0.32 mm length, was selected for intensity measurements and mounted on a Pyrex rod with the c axis parallel to the axis of the rod. A Picker diffractometer equipped with a Datex semiautomatic remote control system, an Electronics and Alloys fullcircle crystal orienter, a scintillation counter and a Mo X-ray tube were used for the intensity measurements. Intensities were measured at room temperature by the stationary-crystal stationary-counter technique with balanced Zr and Y filters for 257 independent reflections, of which 14 were considered unobservable and assigned a minimum value (3 times the square root of the sum transmitted by the Zr and Y filters for the background count). A small correction was added to the background (Y filter) count which was obtained by measuring the 'band width' passed (Compton scattering, thermal diffuse scattering and parasitic scattering) by the filter pair for a particular 2θ value (Burbank, 1965). The data were corrected for Lorentz and polarization factors. The absorption coefficient for Mo $K\alpha$ is 117 cm⁻¹; hence absorption corrections are quite small. However, cylindrical absorption corrections approximating the pseudo-prism were applied; the values of the absorption factors ranged from 2.07 to 2.25. Structure factors were calculated with the use of the lithium, oxygen and iodine scattering factors given in International Tables for X-ray Crystallography (1962, Tables 3.3.1A and 3.3.1B). Iodine dispersion corrections ($\Delta f'$ = -0.6; $\Delta f'' = 2.2$) were included by the method of Templeton (1955) in all later stages of refinement. Calculations were carried out on CDC 1604 and 3600 computers.

Structure determination

The distribution of intensities $(h h \bar{2}h l \text{ with } l=2n+1)$ very weak and h0hl all about equal except when h=3) suggests that iodine atoms occupy (b) sites in space group $P6_3$. These positions are equivalent to those reported by ZB. A three-dimensional Fourier synthesis was calculated with the use of phases determined by the iodine atoms located in (b) sites with z arbitrarily set at zero in all calculations. This Fourier synthesis indicated locations for the oxygen atoms as well as a set of centrosymmetrically related 'ghosts'. Refinement of the three oxygen positional and two isotropic thermal parameters as well as the one scale factor by least-squares methods [unit weights were assigned all reflections except for unobserved reflections

^{*} Throughout this paper, the value of the error corresponds to the last significant digits in the function value.

with $F_{obs} > F_{calc}$ and the 110 reflection, which were assigned zero weights; the function minimized was $\Sigma w(|F_{obs}| - |F_{calc}|)^2$] resulted in a discrepancy index, $R = \Sigma ||F_{obs}| - |F_{calc}|| \Sigma |F_{calc}|$, of 0.057. A three-dimensional difference synthesis calculated with the above refined parameters suggested two possible locations for the lithium atom (in (a) sites with z = 0.095 or 0.905). It somewhat surprised the authors that the ghosts for the Li position should remain after inclusion of the oxygen atoms. Prior to any further attempt at refinement, the environment for a lithium atom at z = 0.095(model A) would consist of 2 sets of 3 oxygen atoms at about 1.83 and 2.78 Å while that for a lithium atom at z = 0.905 (model B) would consist of 2 sets of 3 oxygen atoms at about 2.10 and 2.16 Å.

Least-squares refinement of positional and anisotropic thermal parameters for iodine and oxygen atoms for models A and B (an isotropic thermal parameter was used for the lithium atom in both cases) did not yield significantly different discrepancy indices. In both cases refinement of lithium atom positions resulted in

Table 2. Positional and thermal parameters for LiIO₃

	Li	I	0
x	0.0	13	$0.09358 \pm 0.00214*$
у	0.0	2 3	0.34396 ± 0.00206
Ζ	0.8907 ± 0.0123	0.0	0.16980 ± 0.00199
B or B_{11} B_{22} B_{33} B_{12} B_{13} B_{23}	2.0	$0.833 \pm 0.05 B_{11} 0.853 \pm 0.03 \frac{1}{2}B_{11}$	$\begin{array}{c} 1 \cdot 190 \pm 0.31 \\ 0 \cdot 985 \pm 0.30 \\ 1 \cdot 157 \pm 0.27 \\ 0 \cdot 180 \pm 0.26 \\ 0 \cdot 541 \pm 0.29 \\ 0 \cdot 419 \pm 0.26 \end{array}$

* Standard deviations calculated from least-squares residuals.

Table 3. Observed and calculated structure factors An asterisk denotes reflections assigned minimum observed value.

b k 1	109	107	10A	108	b k 1	107	107	10 A	108	h k 1	107	107	10 A	108	ъ	k 1	. 107	107 _e	10A	108
100 200	406 459 708	409 475 749	-409 -475 760	000	141 241 341	43 341 202	43 366 208	39 -24	-18 365	12323	538 39	496 31	-2 2 8	-496 30	56	15	218 175	223 191	-1 -17	223 -190
4 0 0 5 0 0	278	280	-280	ě	441	45	41	36	-20	423	338	312	3	-312	1	2 5	368	352	-18	<u>چر</u> .
600 700	355	340	340	0	151	197	340	23	-347	623	174	169	ţ	169	3	2 5	286	283	-12	263
8 0 0	96	97	-97	°.	251	30	3	3	-2	133	462 441	417 415	-1	417	5	2 5	* 23	4	3	3
110210	637 387	750 402	750	0	4 5 ī	197	189	- 14	-188	333	60 291	50 273	3	-50	1	3 5	331 263	312 259	1 28	312 -258
310 410	352 443	352 486	-352 486	0	161 261	257 222	268 222	-13 -2	268 -222	5 3 3	209	206	-5	-206	3	3 5	42 191	38 193	31 -6	23 193
510 610	129 145	136 152	-136 -152	0 0	361	27	26	-22	13	1 4 3 2 4 3	39 304	35 281	-9 -5	34 280	1	4 5	31	26	-15	-21
710	239	247	247	0.	1714	23	14	12	-6	343 443	271 40	248 37	-2 0	-248 37	2 3	4 5	254 205	243 211	19 -6	242 -211
120	190 633	201 671	-201 671	0	002	730 428	405	667 -405	246	153	273	255	-1	-255	1	5 5	246	241	-21	-240
320	249 137	266 137	-266 -137	0	202	343 622	320 585	-307 584	-89	253 353	• 21 220	3 210	0 5	3 210	2	5 5	26	3	-2	-1
6 2 0	- 151	309 147	-147	0	4 0 2 5 0 2	263	233	-231 -186	-30	163	230	221	4	221	1	6 5	191	195	5	195
1 3 0	152	143	-143	0	702	370	338 120	-117	-19 -24	203	210	204	-2	-204	0	06	463 195	187	463 -187	17
330	371	256 397	-256 397	0	1 1 2	772	801	793	-114	173	• 24	12	-1	12	2	06	213 326	206 341	-206 341	3
4 3 0	158 154	175 158	-175 -158	0	212	320 261	296 241	-287 -230	-70 -71	104	561 320	516 307	494 -306	-150 -18	4	06	157 136	156 145	-156 -145	-4 4
630	221	215	215	0	4 1 2 5 1 2	500 225	208	446 -206	-19 28	204	264 456	260 433	-258 432	32 -28	1	16	332	331	331	4
140	480 194	461 217	461	0	612 712	148 242	143 228	-143 227	-7 -1	504	212 166	206 158	-206 -157	13 20	2	16	194 176	193 183	-193 -183	6 0
3 4 0	157 254	174 265	-174 265	0	1 2 2	407	379	-374	63	604 704	280 106	276 104	275 -103	10 17	5	16	246 86	257 89	257 -88	9 12
5 4 0	100	97	97	0	222	579 234	533 219	533 -217	10 -34	1 1 4	575	545	544	43	1	2 6	151	137	-136	15
250	354	392	-186 392	0	4 2 2 5 2 2	237 322	220 300	-217 299	38 22	214	250	239 206	-237 -203	24 36	2	5 6	312 158	320 151	320 -151	2
3 5 0	114	119	-119	0	0 2 2	115	114	-112	-18	514	379	360 167	360 -163	-1		26	, 90 	88	-88	3
160	137	135	-135	0	232	245	221	-220	-26	014	123	123	-123	0	2	36	117	105	-105	0
3 6 0	207	207	207	ŏ	432	161	152	-152	-12	224	307 410	417	416	-28	3	30	204	221	220	-3
170	218	224	224	o	, , , , , , , , , , , , , , , , , , ,	127	120	-111	-26	424	195	187	-183	-39	2	4 6	240 31	131	-130	-3
101	889 632	838 612	-81 -156	835	242	181	184	-182	-26	624	95	104	-103	14	1	56	5 117	113	-113	2
301	14	11	10	-3	442	287	276	275	-21	134	288 10k	266	-257	-70	1	0 7	263	270	-14	270
501	368	345	-56	-340	1 5 2	181	178.	-178	-8	334	339	323	322	20	3	0 7	· 22	5	4	3
701	226	221	32	218	2 5 2	268	285	282	38	5 3 4	105	106	-105	17				201		201
	 	104	-2	-104	452	104	139	-139	-4	144	395	358	358	18	2	1 7	238	34 248	-31	15 248
211	628 575	632	-161	630	162	144	147	-147	9	344	139	152	-151	2	3	1 7	* 215 * 24	233 11	38 11	-230 4
411	35	28	24	-13	202	131	130	-129	13		240	252	231	12	1	2 7	228	237	-2	-237
611	274	275	19	-275	1 1 2	273 670	242 1525	241 6	-19	254	256	245	241	-42	3	2 7	177	185	10	-8 185
121	501	505	-10	-505	203	652	640	10	-640	3 7 4	166	111	-110	-13	1	3 7	7 209	218	-1	218
223	49 413	42	36	-22	403	432	391	-1	391	264	124	119	-119	-11	2	5 /	101	190	-23	-100
4 2 3	352	346	-9	-346	6 0 3	24 24	217	-7	16	105	437	420	19 16	420	-	• •	1 = 24 21.	70 10	202	1
6 2 3	241	242	-31	240	, v ,	118	110	-1	-110	305	19 204	201- 201-	-1	-6 -6	1	0 8	120	123	-123	6
131	485 418	500 Juni	-2	500 - 307	2 1 3.	472	453	-3	453	505	229	234	34	-231	3	οĒ	3 189	215	215	13
331	68	60	-53	29	413	26	22	-2	22	0 V 3	21 50	17 17	-0 kc	-14	1	1 4	236	252	251	-13
5 3 1	236	237	5	-237	613	229	213	4	-213	215	373	362	19	361	2	1 0	, 705 2 T05	104	-104	-10
		**	-9	(1 - 3	- 24	1	0	-4	415	* 20	373 16	-48	-350	1 2	2 8	3 202	129	-128 199	17 6

a shortening of the shorter Li–O separations given above. Refinement of model A results in a lithium parameter of z equal to 0.1286 (with Li–O values of 1.71 and 2.78 Å); fractional positional parameters for oxygen differed by 1×10^{-5} and B_{ij} (oxygen) differed by a maximum of 0.1σ from values for model B listed in Table 2. However, one may rule out model A by consideration of the sum of ionic radii (using 0.60 Å for Li⁺ and 1.32 to 1.40 Å for O^{2–}; Pauling, 1960).

The final positional and thermal parameters (Table 2) result in a discrepancy index of 0.049. Anisotropic thermal parameters, B_{ijn} , are of the form exp $(-\frac{1}{4}$

 $\sum_{i=1}^{\Sigma} \sum_{j=1}^{\Sigma} B_{ijn}h_ih_ja^*a^*_j$. Table 3 lists the observed and

calculated structure factors scaled by 10 times as indicated. Table 4 lists the interatomic separations and bond angles. Other reported I–O bond lengths and O–I–O angles have been summarized by Ibers (1956), and range from acceptable values of 1.77 to 1.86 (average 1.82) found in NaIO₃ (van Eck and MacGillavry, 1943), Ce(IO₃)₄ (Cromer & Larson, 1956), Ce(IO₃)₄. H₂O (Ibers, 1956), and HIO₃ (Rogers & Helmholz,

Table 4. Interatomic separations in LiIO₃

Separations	Standard deviation
2·038, 2·220 Å	0∙06 Å
1.817	0.017
2.873	0.017
2.756	0.024
2.925, 3.085	0.024
98·65°	0.6°
	Separations 2.038, 2.220 Å 1.817 2.873 2.756 2.925, 3.085 98.65°

1941) to improbable values of 2.08 Å (Naray-Szabo & Neugebauer, 1947) or larger (suggested by octahedral iodine in the iodates of cesium, rubidium and ammonium ion).

It is unfortunate in a crystal whose space group is unambiguously established that the iodine atoms are related to each other by a point of inversion, and hence one is not able to utilize their dispersion to resolve the absolute configuration of the packing.

References

BURBANK, R. D. (1965). Acta Cryst. 18, 88.

- CROMER, D. T. & LARSON, A. C. (1956). Acta Cryst. 9, 1015. ECK, P. VAN & MACGILLAVRY, C. H. (1943). Rec. Trav. chim. Pays-Bas, 62, 729.
- IBERS, J. A. (1956). Acta Cryst. 9, 225.
- International Tables for X-Ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KAPLAN, S. (1966). Doctoral dissertation, University of New Mexico.
- NARAY-SZABO, I. & NEUGEBAUER, J. (1947). J. Amer. Chem. Soc. 69, 1280.
- NBS (1957). Circular 539, 7, 26.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed. p. 514 f. Ithaca: Cornell Univ. Press.
- ROGERS, M. T. & HELMHOLZ, L. (1941). J. Amer. Chem. Soc. 63, 278.
- TEMPLETON, D. H. (1955). Acta Cryst. 8, 842.
- WYCKOFF, R. W. G. (1960). Crystal Structures, Ch. VII, paragraph a12. New York: Interscience Publishers.
- ZACHARIASEN, W. H. & BARTA, F. A. (1931). Phys. Rev. 37, 1626.

Acta Cryst. (1966). 20, 761

Cation Distribution and Oxygen Parameter in Magnesium Gallate, MgGa₂O₄

By JAMES E. WEIDENBORNER, N. R. STEMPLE AND Y. OKAYA

IBM Watson Research Center, Yorktown Heights, New York, U.S.A.

(Received 1 June 1965 and in revised form 24 September 1965)

Magnesium gallate, MgGa₂O₄, a partially inverted spinel, belongs to space group Fd3m with $a_0 = 8.286 \pm 0.003$ Å. The distribution of the di- and trivalent cations on two possible sites, 8(a) and 16(d), has been determined by the least-squares method. The data used in the refinement were obtained from single crystals by film and counter techniques; the counter data were collected manually and by CCXD, a computer-controlled X-ray diffractometer.

The magnesium ions are distributed between the two sites as follows: $16 \pm 2\%$ in the tetrahedral A site and $81 \pm 1\%$ in the remaining octahedral B site. The oxygen parameter as refined in the present study is 0.3824 ± 0.0003 , indicating the usual shift for the inverted spinel from the ideal value of 3/8.

Introduction

Magnesium gallate, MgGa₂O₄, is a partially inverted spinel with space group Fd3m. The metal ions fall on sets of special positions 8(*a*) and 16(*d*), frequently referred to as the *A* and *B* sites respectively. The oxygen

ions occupy a set of special positions 32(e) with one positional parameter to be determined.

Interest in this compound developed through electron spin resonance studies of Cu^{2+} conducted at these Laboratories (Overmeyer, 1963) using magnesium gallate as a host lattice. A substantial broadening is ob-